NOTES

bulletin of the chemical society of Japan, vol. 45, 3715—3716 (1972)

An SCF-MO-INDO Study of Isotropic and Anisotropic Hyperfine Coupling Constants for Sigma Radicals

Tetsuo Morikawa and Osamu Kikuchi
Department of Chemistry, Tokyo Kyoiku University, Otsuka, Bunkyo-ku, Tokyo
(Received November 25, 1971)

A knowledge of theoretically calculated hyperfine coupling constants (hfc) for a radical is helpful in interpreting its electronic structure and explaining the magnitudes and signs of the observed values. In the calculation of the isotropic hfc, the spin-polarization effect should be included.¹⁾ The one-center dipolar interaction integrals mainly contribute to anisotropic hfc.²⁾ With these two factors taken into consideration, an improved SCF-MO function has been constructed and the isotropic and anisotropic hfc have been calculated.

The ground electron-configuration (Ψ_g) for a radical was obtained in terms of the approximate open-shell MO's of Longuet-Higgins and Pople using INDO approximation.³⁾ There are four types of one-electron-excited electron-configurations which are eigen functions (doublet) of S_z and S^2 . When SCF-MO's are used, however, only one of them $(\Psi_{ik}(II))^4$ interacts with Ψ_g and the wave function Ψ_g can be improved by use of the first order perturbation: $\Psi = \Psi_g + \sum \lambda_{ik} \Psi_{ik}$ (II). The i, j components (i, j = X, Y, Z) of the anisotropic hfc, A_{ij}^N , and the isotropic hfc, a^N , for a nucleus N are:

$$A_{ij}^{N} = g\beta\hbar\gamma_{N}tr(\rho P), \ P_{rs} = \langle \chi_{r}|r_{N}^{-5}(3r_{Ni}r_{Nj} - r_{N}^{2}\delta_{ij})|\chi_{s}\rangle,$$

$$a^{\mathrm{N}} = (8\pi/3) \mathrm{g} \beta \hbar \gamma_{\mathrm{N}} tr(\rho \mathrm{Q}), \quad Q_{rs} = \langle \chi_r | \delta(r_{\mathrm{N}}) | \chi_s \rangle,$$
 (2)

$$\rho_{rs} = C_{rm}C_{sm} + \sum_{i,k} (C_{ri}C_{sk} + C_{si}C_{rk})(mi|mk)/\Delta E_{ik},$$
(3)

where C_{ri} are the LCAO coefficients $(\phi_i = \sum \chi_r C_{ri})$, ΔE_{ik} the energy differences between Ψ_{ik} (II) and Ψ_g , ρ_{rs} an element of the AO spin density matrix, and the other notations have their usual meaning. The second term in ρ_{rs} is what appears by spin-polarizarion. If AO's χ_r and χ_s belong to different atoms, dipolar interaction integrals P_{rs} are evaluated over the Slater type AO's²⁾ and one-center P_{rs} over the SCF-AO's expanded by Löwdin.⁵⁾ Q_{rs} are also evaluated over the Löwdin's SCF-AO's, only if both χ_r and χ_s are centered on the atom N.

The hfc of HCO, CO_2^- , CH_2 =CH, HCN-, and CH=C were calculated. The results for HCO, a typical σ -radical, are described in some detail. The electronic structure of this radical has been reported.³⁾

Table 1. Contribution of electron-configurations to hfc (MHz) of 1HCO in the principal axes

Configuration	a	A_{xx}	A_{xy}	A_{yy}	A_{zz}
Ψ_g	243	23.2	-3.3	-6.3	-16.9
$1 \sigma \rightarrow 6 \sigma$	1	-0.1	0.2	0.0	0.1
$2\sigma \rightarrow 6\sigma$	31	-3.3	2.1	1.3	2.0
$2\sigma \rightarrow 7\sigma$	5	-1.0	-0.4	0.6	0.4
$3\sigma \rightarrow 6\sigma$	9	-1.1	0.9	0.4	0.7
$3\sigma \rightarrow 7\sigma$	2	-0.4	0.1	0.3	0.2
$1\pi \rightarrow 2\pi$	0	0.6	-0.1	-0.6	0.0
$4\sigma \rightarrow 7\sigma$	-3	0.8	0.5	-0.5	-0.4
Sum of $i \rightarrow k$	45	-4.6	3.3	1.5	3.1
Total	288	18.7	0.0	-4.8	-13.9

Table 2. Contribution of each atom to the anisotropic hfc (MHz) of $H^{13}CO$ in the principal axes

A	Atom	A_{xx}	A_{xy}	A_{yy}	A_{zz}
\mathbf{C}	$2p_{x}^{2}$	-4.3	0	2.2	2.2
	$2p_y^2$	-27.4	0	54.8	-27.4
	$2p_z^2$	-1.5	0	-1.5	2.9
	Others	0	-0.1	0	0
	Total of C	-33.2	-0.1	55.5	-22.3
\mathbf{H}		3.1	2.9	-0.8	-2.3
Ο		4.6	-2.8	-1.3	-3.3
	H + O	7.7	0.1	-2.1	-5.6
Tot	al	-25.5	0	53.4	-28.0

The contribution of each electron-configuration to hfc for the proton is shown in Table 1. We see that the most important contribution is C-H $\sigma \rightarrow \sigma^*$ ($2\sigma \rightarrow 6\sigma$). Spin-polarization should be included in the calculation of anisotropic hfc as for the isotropic hfc.

Each atom of HCO contributes to hſc of 13 C (Table 2). Holmberg⁶) resolved the experimentally observed hſc (MHz) of 13 C into two axial parts: $(A_{xx}, A_{yy}, A_{zz}) = (-48, 72, -24) = (-40, 80, -40)_{2py} + (-8, -8, 16)_{2pz}$. The second term shows the contribution of the carbon $2p_z$ orbital normal to the molecular plane. Table 2 suggests that the effect of neighbouring atoms is larger than that of $C(2p_z)$, and that the observed values can be resolved into those of $2p_x$ and $2p_y$. Direction cosines obtained show that the principal axis y of 1 H, 13 C, and 17 O rotate by 75 °, 33 °, and 16 ° from the C–O bond, respectively. The results for HCO are compared with available experimental data in Table 3. Satisfactory agreement was found for both

¹⁾ T. Yonezawa, T. Kawamura, and H. Kato, This Bulletin, 43, 74 (1970).

²⁾ T. Morikawa, O. Kikuchi, and K. Someno, Theoret. chim. Acta, 24, 393 (1972).

³⁾ T. Morikawa, O. Kikuchi, K. Someno, ibid., 22, 224 (1971).

⁴⁾ O. Kikuchi and K. Someno, This Bulletin, 40, 2972 (1967).

⁵⁾ P.-O. Löwdin, Phys. Rev., 90, 120 (1953).

⁶⁾ R. W. Holmberg, J. Chem. Phys., 51, 3255 (1969).

Table 3. Calculated results for σ -radicals (MHz) (Data in the parentheses are experimental.)

Radical	Nucleus	a	A_{xx}	A_{yy}	A_{zz}	Ref.
НСО	Ή	288 (354) (381)	19 (25) (15)	-5 (-8) (-2)	$-14 \\ (-17) \\ (-14)$	6 7
	¹³ C	550 (365) (378)	$ \begin{array}{r} -25 \\ (-48) \\ (-39) \end{array} $	53 (72) (50)	$-28 \ (-24) \ (-12)$	6 7
	17O	-22 ()	47 ()	-100 ()	54 ()	
CO ₂ -	13C	610 (467)	$ \begin{array}{r} -21 \\ (-47) \end{array} $	54 (79)	$-33 \\ (-33)$	8
	¹⁷ O	$-29 \\ (-90)$	38 (25)	$-75 \\ (-53)$	38 (28)	8
HCN-	¹H	356 (384)	19 ()	_8 (_)	—11 (—)	9
	¹³ C	550 (207)	—21 (—)	35 ()	—14 (—)	9
	¹⁴ N	10 (18)	43 ()	-20 ()	-23 ()	9
Vinyl	$^{1}\mathrm{H}_{\scriptscriptstylelpha}$	56 (45)	36 (38)	$-9 \\ (-11)$	$-27 \\ (-27)$	10, 11
	$^{1}\mathrm{H}_{trans}$	251 (190)	8 ()	-6 ()	-2 ()	10
	$^1\mathrm{H}_{cis}$	118 (95)	10 ()	_5 (_)	_5 (_)	10
	$^{13}\mathrm{C}_{lpha}$	388 (301)	-58 ()	110 (—)	—51 (—)	12
	$^{13}\mathrm{C}_{eta}$	$-27 \\ (-24)$	13 ()	_4 (_)	_9 (—)	12
Ethynyl	¹H	151 (45)	4 ()	-2 ()	-2 ()	10
	$^{13}\mathrm{C}_{\scriptscriptstylelpha}$	978 (—)	87 ()	-44 ()	-44 ()	
	$^{13}\mathrm{C}_{eta}$	54 ()	27 ()	-13 ()	-13 ()	

the isotropic and the anisotropic hfc. The present results are slightly better than the previous ones, $^{2)}$ e. g., for the anisotropic hfc (MHz) of 13 C, from (-17, 47, -30) to (-25, 53, -28). The isotropic and anisotropic hfc of other σ -radicals calculated by the present method, some of which are given in Table 3, are useful for the analysis of complicated ESR spectra in solid solution.

⁷⁾ E. L. Cochran, F. J. Adrian, and V. A. Bowers, J. Chem. Phys., 44, 4626 (1966).

⁸⁾ S. Schlik, B. L. Silver, and Z. Luz, *ibid.*, **54**, 867 (1971).
9) K. D. J. Root, M. C. R. Symons, and B. C. Weatherly, *Mol. Phys.*, **11**, 161 (1966).

¹⁰⁾ E. L. Cochran, F. J. Adrian, and V. A. Bowers, *ibid.*, **40**, 213 (1964).

¹¹⁾ M. Iwasaki and B. Eda, ibid., 52, 3837 (1970).

¹²⁾ R. W. Fessenden, J. Phys. Chem., 71, 74 (1967).